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SUMMARY

A Fourier analysis was performed in order to study the numerical characteristics of the effective
Eulerian—-Lagrangian least squares collocation (ELLESCO) method. As applied to the transport equation,
ELLESCO requires a C!'-continuous trial space and has two degrees of freedom per node. Two coupled
discrete equations are generated for a typical interior node for a one-dimensional problem. Each degree of
freedom is expanded separately in a Fourier series and is substituted into the discrete equations to form a
homogeneous matrix equation. The required singularity of the system matrix leads to a ‘physical’ amplifica-
tion factor that characterizes the numerical propagation of the initial conditions and a ‘computational’ one
that can affect stability.

Unconditional stability for time-stepping weights greater than or equal to 0-5 is demonstrated. With
advection only, ELLESCO accurately propagates spatial wavelengths down to 2Ax. As the dimensionless
dispersion number becomes large, implicit formulations accurately propagate the phase, but the higher-
wave-number components are underdamped. At large dispersion numbers, phase errors combined with
underdamping cause oscillations in Crank—Nicolson solutions. These effects lead to limits on the temporal
discretization when dispersion is present. Increases in the number of collocation points per element improve
the spectral behaviour of ELLESCO.
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INTRODUCTION

Classical finite element and finite difference solutions to the advective—dispersive transport
equation are contaminated by serious phase and amplitude errors when the advection term
becomes large.! Methods known as ‘Eulerian-Lagrangian methods’ (ELMs) or the ‘Modified
method of characteristics’ (MMOC) have been developed to improve the behaviour of numerical
solutions when advection dominates.? ™ *2 This class of methods solves the transport equation in
two steps. The first step tracks back or projects forward one time level along the characteristics of
the first-order terms of the transport equation and hence is Lagrangian in nature. Using the
information derived from the first step, in the second step one solves the resultant equations on a
fixed, or Eulerian, spatial grid. The Lagrangian step of ELMs eliminates the troublesome first-
order terms from the algebraic system of equations, and deforming grids associated with purely
Lagrangian schemes are avoided. Recently, Bentley et al.!?® introduced the ‘Eulerian—Lagrangian
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least squares collocation’ (ELLESCO) method. In ELLESCO one approximates the time
derivative as a finite difference along the characteristics of the first-order terms of the equation.
The spatial portion of the equation is discretized using cubic Hermite basis functions in
conjunction with a least squares collocation metod of weighted residuals. Comparison of
ELLESCO test problem results with the results of other ELMs and the Galerkin finite element
method demonstrated the enhanced accuracy of the method. Because of these encouraging
results, a Fourier analysis of the procedure is presented in this paper.

Fourier analysis is a well known tool for studying the behaviour of discretized systems.
Although Fourier analysis is limited to regular grids with constant coefficients and does not
account for boundary conditions, it yields results that describe the local nature of the solution
propagation and its stabilitiy.

As discussed by Bentley et al.,'> ELLESCO requires continuity of the function and the first
spatial derivative at the element boundaries. Cubic Hermite basis functions are used to satisfy this
requirement, and there are two basis functions associated with each node. We approach the
Fourier analysis of ELLESCO in a manner similar to the development of the Fourier analysis for
linearized forms of the coupled shallow water equations.! Accordingly, we derive a set of two
coupled homogeneous equations that is associated with a typical interior node. The two degrees
of freedom associated with each node are expanded separately in Fourier series, and the Fourier
series expansions are substituted into the discrete equations to form a homogeneous matrix
equation. For non-trivial solutions to exist, the determinant of the coefficient matrix of this
system must equal zero. This condition will lead to a quadratic equation that can be solved for the
‘physical root’ of an amplification factor that characterizes the propagation of a Fourier mode of
the initial condition and another ‘computational’ root that can affect the stability. The amplifica-
tion factors are used to demonstrate the stability and accuracy of the ELLESCO method.

DISCRETE EQUATIONS

In this section we derive the set of two discrete equations which represents the ELLESCO
equations at any node away from the domain boundaries. The equations are used in the next
section for the Fourier analysis derivation. A thorough development of the ELLESCO equations
for the generalized one-dimensional parabolic partial differential equation can be found in
Reference 13 and will not be repeated here. Instead, we will summarize the development for the
one-dimensional advective—dispersive transport equation with constant coefficients, because it is
the equation used in this paper for the Fourier analysis:
2
o + Va—c - D-‘E~0

ot dx ox2 (M)

where C is the concentration, V is the flow velocity and D is the dispersion coefficient. Equation
(1) can also be written in Lagrangian co-ordinates as

aC 8*C
(5), 25 - ?

where y = x — V't is a co-ordinate system that follows the fluid motion.

Equation (2) is now discretized using finite differences in time and finite elements in space.
Temporal indices are denoted by n such that 1 = nAt. Spatial indices are denoted by p such that
node locations are x = pAx (Figure 1). ELLESCO requires the evaluation of residuals at discrete
points referred to as collocation points. The number of collocation points per element will be
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Figure 1. Discretization geometry. The discretization at a typical interior node P with a three-collocation-point pattern is

shown. Identical spatial grids are used at time levels n and n + 1; however, different portions of the grid contribute to the

equations associated with node P. The n + 1 time level collocation points are spread over two elements, but their back-

tracked locations are spread over three elements. The elemental co-ordinates of the back-tracked collocation points x¥ are
functions of a. The contributing nodes at the n time level are determined by M

characterized by the parameter ncel, and the number and location of the collocation points are
assumed the same for all elements. Collocation points are separated by Ax/ncel. Figure 1 contains
the collocation point pattern for the ncel = 3 case.

We now write the finite difference approximation to equation (2) for a collocation point x, in
terms of the Eulerian co-ordinate system (x, t):

0*Cxy, tys 1) _
Ox?

where 0 < ® < 1 is a time-stepping weight and x¥ = x, — VAt. The position x; of a collocation
point at time level n + 1 can be projected back along the flow line passing through it to x} at time
level n. As an example, consider the collocation point x; in Figure 1.The first and third terms of
equation (3) are evaluated at x,, and the second and fourth terms are evaluated at the back-
tracked location x¥.

Owing to the second-order spatial derivatives and the use of the least squares procedure, we
require trial functions that are continuous in the value of the function and the first derivative at all
points in the domain, including element boundaries. A trial function constructed with cubic
Hermite polynomials will satisfy these conditions, and Figure 2 shows the notation, algebraic
form and graphical illustration of the cubic Hermite basis. As usual, we have defined the basis
functions in terms of the local or elemental co-ordinate system —1<¢&< 1. The cardinal basis
functions associated with each node are constructed from the functions defined in Figure 2:

pICOE 1) _

C(xy, tyy 1) — C(xF, t,)— AtOD ot

At(1 —©) 0, 3

_ O, (p—DAX<x < pAx,

plx) = {‘DS(é(x)), pAx <x<(p+ 1)Ax, (4a)
_ foix), (p—DAx<x<pAx,

®plx) = { ®L(E(x), pAx<x<(p+ 1)Ax, (4b)

and zero elsewhere.
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Figure 2. Cubic Hermite basis functions. Two cubic Hermite basis functions are associated with each node, and four
functions contribute to interpolations within an element. Basis functions are defined on an elemental co-ordinate system.
Local co-ordinates are related to global co-ordinates by the expression ¢ = 2(x/Ax — P)—1

The trial function at time level n is
R P
¢ = 3, [GO;(x) + CX;0,(x)], 5)
o=

where P is the total number of nodes and the coefficients C; and CX}, are the values of the trail
function and the derivative of the trial function respectively at node p and time level n. Of course,
in the interior of the elements the value of the function and the derivative are computed using a
linear combination of the four basis functions associated with the element.

The ELLESCO system of algebraic equations is arrived at as follows. The residual R, is formed
by substituting the trial function, equation (5), into equation (3) and evaluating the result at each
collocation point k. The sum of the squares of the residuals is then obtained and is minimized by
taking the derivatives with respect to each of the unknown coefficients and setting the derivatives
equal to zero. Two equations are generated at each node, one from the derivative with respect to
C;*! and one from the derivative with respect to CX3**. If the domain contains P + 1 nodes, a
system of 2P +2 equations is formed. Away from the boundaries the assumptions of constant
coefficients, constant discretization intervals and an identical pattern of collocation point
locations within each element imply that all nodes have identical sets of associated equations,
which can be written for the node p as

dR, 62<D
R—-= R (l) — =
kezx,, Proas ,.EZK,, k( At®@D e ) 0, (6a)
JR, 62<I>,1,,,
k;p "BCX"“—,,Z R,‘<d> — At®OD 2 =0, (6b)
where
pt+1
R, = Z (C"“<D +CX"“<I>) Z,
g=p—1
9 pr1 62C".
—At@Db? Z (C"“(I) +CX"+‘(I)‘k)—At(1—®)D . W)
qg=p-
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The subscript k indicates that the basis function is evaluated at the location x,, and
CAﬁ. denotes C(x¥,t,). The notation keK » indicates the collocation points contained in the region
of support of the basis functions of node p or, in other words, the collocation points that fall in the
two elements which are adjacent to node p. For the example in Figure 1 the summation is over
points x, to x4 The large parentheses of equation (6) contain the derivatives of the residuals with
respect to the appropriate unknown coefficients. The difference between equations (6a) and (6b) is
simply the difference between the right-hand portion of the products or, in method of weighted
residuals terminology, the difference between the weighting functions.

The dimensionless dispersion number D = DAt/(Ax)?, the Courant number Co = VAt/Ax
= M + « and the Peclet number Pe = Co/D are dimensioniess parameters used to characterize
the temporal and spatial discretization of the transport equation. The dispersion number is a
measure of the amount of dispersion that occurs during a single time step, the Courant number is
a measure of the distance that is travelled by the flow field in a time step and the Peclet number is
a measure of the relative strength of advection and dispersion. The Courant number has been
decomposed into an integer portion M > 0 and a fractional portion 0 < o < 1. The equations used
for the Fourier analysis will include the dispersion number D, the integer Courant number M and
the fractional Courant number « as dimensionless parameters.

We now summarize some algebraic manipulations that will not be duplicated here. After
substituting equation (7) into (6) and rearranging, the cardinal basis functions are replaced by
local basis equivalents, and the spatial derivatives %(-)/0x? are replaced by their local co-ordinate
equivalents (4/Ax?) 0(-)/0&2. The variable C‘,’;. must be expanded in terms of the local basis and
the known coefficients at time level n.

The location of xf is strictly a function of x, and the Courant number. Referring to Figure 1, we
see that a collocation point is shifted back in space M full elements and o partial elements. In
general, collocation points that are spread over the two elements of interest in the n + 1 time level
will end up spread over three elements in the n time level. Note that the local co-ordinate
associated with x§ is dependent only on the fractional Courant number « and that the integer
Courant number M determines which nodes are to be used in the evaluation of C;, and its second
derivative.

After performing the above manipulations and summing over the collocation points contained
in the elements adjacent to node p, equation (6) becomes

O +aCxXttl +a O+ a,CXT T al O+ al CXT Y
— (O s+ HCX] s +AACH o +ACX
+f15C;—M +f16CX;—M+ﬂC;—M+1 +fé,CX;—M+1) = 0, j= 0, 1. (8)

A detailed evaluation of the coefficients of equation (8) for the example illustrated in Figure 1 is
found in Appendix I. Coefficients @’ to a) and f; to fJ are functions of ®, D and, through the
number and implied locations of the collocation points, ncel. Coefficients f} to fj are also
dependent on the fractional Courant number a.

The two discrete equations represented by equation (8) are in the form of difference equations
which will be used for the Fourier analysis.

FOURIER ANALYSIS OF ELLESCO EQUATIONS

Fourier analysis is a well known technique for quantitatively investigating the propagation
characteristics of the individual spatial frequencies of the solution to the transport equation. In
this section we derive the complex amplification factors which characterize the numerical
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propagation of each Fourier series component by the ELLESCO method. We also present the
amplification factors of the analytical solution as a comparsion.

The analytical derivation has been presented in detail elsewhere!' '* and only a brief summary
is presented here. The analytical solution of equation (1) is assumed to have the form

m= co
Cx,t)= Y Fnexpli(Bnt+0,x)], )
m= — o
where F,, are complex coefficients determined by the initial conditions, ,, = 2rn/L,, are the wave
numbers, L,, are the spatial wavelengths, ,, are the temporal frequencies and ‘1’ is the square root
of minus one.

Equation (1) is linear, so we can analyse each Fourier component separately. Substitution of
one component of the series represented by equation (9) into equation (1) leads to a relation
between B,, and o,,. We can use that relation to eliminate f§,, from equation (9). A general term of
equation (9) becomes

Cp = Fexp(— Da2t)exp[io,(x — V1)]. (10

The amplitude of the mth component is determined by the first two factors on the right-hand side
of equation (10) and the translation by the last. The amplification factor is that portion of
equation (10) which determines how the solution evolves as time increases. Anticipating the form
of the computed amplification factor, we introduce t = nAt into equation (10) and arrive at

¢ = Fexplio,x)An, (11)

where 4,, = exp[ — (Do +ig,, V)At] is the analytic amplification factor. It determines the
amount of change in the amplitude and phase on the mth component over one time step interval.

We now turn to the analysis of the ELLESCO numerical method. The two degrees of freedom
associated with each node bthave as independent state variables and can be represented by
separate discrete Fourier series. This is analogous to the treatment of velocity and wave height in
the Fourier analysis of the linearized shallow water wave equations.! We assume that the two
solutions can be expanded as

P-1
Cr = mzo U exp[i(B.nAt + 6, pAx)],

P-1 (12)
CXn = ,"Zo UX exp[i(nAt + 0, pAx)],

where m is the wave number index and P + 1 is the total number of nodes. U, and UX,, are
determined from the initial conditions.
As is typicial we define the amplification factor of the numerical solution as

Fm = exp(i,At). (13)
We also introduce the dimensionless wavelength

L,=L,/Ax (14)
and the dimensionless wave number

&, = 0,Ax = 2n/L,. (15)

The system we are analysing is linear, so we can treat the Fourier components individually. A
single mode from equation (12) is substituted into equation (8) along with equations (13) and (15).
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The subscript m is dropped and after simplifying we get
@ U+ adUX)le  +(@,U + a, UX)A + (asU + alUX) 1
—e T M(fIU+fUX)Te 2 +(fLU+fLUX)Je™™
F(AUHLUXI+(fU+fiUX)e] =0, j=0,1. (16)

We can also write equation (16) in matrix form as (see Appendix II)

Hyi1 B2 U >
=0. (a7
<ﬂ21 ﬂ22> (UX

For non-trivial solutions to exist, the determinant of the coefficient matrix of the above system
must equal zero, or

P11 b2z — H12 Hay = 0. (18)
Equation (18) is quadratic in 7 and we can apply the quadratic formula to obtain the complex
amplification factor

—ieM

1= I(D, 0O, M,a, ncel, 6) = ¢ —
2a

[ —b+ /(6> —4a?)]. (19)

At this point we restrict ourselves to a summary of the main features of equation (19) and refer
the reader to Appendix II for a more detailed description of the derivation and form of the terms.
The coefficient a is real and a function of D, ®, ncel and o. In general, b and ¢ are complex and
functions of D, ®, a, ncel and a. The fractional Courant number influences both the phase and
amplitude of the solution. The influence of the integer Courant number is restricted to the
exponential term of equation (19), so M affects the phase but not the amplitude of the Fourier
components.

In typical discrete Fourier series analysis the limit to the smallest wavelength that can be
propagated is 2Ax. However, methods which use the cubic Hermite basis can propagate waves to
a limit of Ax.'* This is due to the continuity of the first derivative at the nodes, and the reader is
referred to Reference 15 for a discussion of sampling both the value and derivative of a signal.
Accordingly, amplification factors can be computed for waves as small as Ax.

Since equation (18) is quadratic, 7 has two roots. One of them is the ‘physical’ root and mainly
determines how ELLESCO propagates the solution. The second root is a ‘computational’ root
and little affects the solution propagation. However, it can affect the stability of the numerial
algorithm.

STABILITY

After n time steps the amplitude of a numerically propagated Fourier mode is |F,,| II,,,I" and, in
principle, n can grow without bound. It follows that for a numerical algorithm to remain stable,
|4.] < 1. As was mentioned earlier, two roots arise from equation (18), a ‘physical’ and a
‘computational’ root. Obviously, the amplitude of the physical root must remain less than one.
Because computational modes can be introduced through round-off errors, the amplitude of the
computational root must also remain less than one. Otherwise, the round-off errors will grow
without bound.

Two cases arise depending on whether D is zero or not. When D = 0 there is no ® dependence
and the two roots become functions of Co and ncel. Figure 3 presents equal-amplitude contours
as a function of Courant number and dimensionless wavelength for the case of ncel = 3. The
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Figure 3. Contours of equal amplitude of the amplification factors. The amplitudes of the physical and computational

amplification factors are contoured in the normalized wavelength—~Courant number plane at 0-25 interval for D = 0,

ncel = 3. The identical patterns for different values of M and the symmetry about a = (-5 are characteristics of

ELLESCO observed for any values of the problem parameters. The values do not exceed 1-0, demonstrating stability. See
Figure 4 for profiles A~A’ and B-B’
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Figure 4. Amplification factor amplitudes versus normalized wavelength. Amplitude profiles for the physical (A-A’,
Figure 3) and computational (B-B’, Figure 3) amplification factors are plotted for D = 0, Co = 0:75 and ncel = 2, 3, 8.
Both roots exhibit stability, and the longer wavelengths of the computational root are well damped

contour patterns repeat with changing integer Courant number, demonstrating that the ampli-
tude has no dependence on M. Within each integer Courant number pattern the amplitude is also
symmetric about a = 0-5. The form of the amplitude patterns exists regardless of the problem
parameters.

Cross-sections along Co = 075 for ncel = 2, 3 and 8 are shown in Figure 4. The analytic
amplification factor amplitude is exactly one for all frequencies when D is zero. The physical root
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Figure 5. Computational root amplitude versus normalized wavelength. Amplitude profiles of the computational root
are plotted for D = 20, Co = 0'5 and (@ = 05, ncel = 2, 3), (® = 1, ncel = 2). The computational root is poorly damped
when the Crank—Nicolson formulation is used with only two collocation points per element. The computational root is
well damped by the implicit formulation except at L = Ax where the computational root aiways has an amplitude of one

amplification factor amplitude is one for all but the shortest wavelengths, where it decreases
rapidly. The computational root’s amplitude is less than one for most wavelengths and is equal to
one for only the shortest wavelengths. Both roots are stable for all ncel. For integer values of the
Courant number (o = 0) the two numerical amplification factors are equal and have an amplitude
of one. When ncel = 2 there is an additional line of neutral stability at « = 0-5.

When D is not zero the amplification factor amplitudes also depend on the values of D and @.
Many permutations of the problem parameters exist, so we summarize the basic stability results.
Predictably, the implicit formulation (® = 1) demonstrates the greatest stability, and all com-
binations of D, Co and ncel are stable, Similarly, the expected conditional stability was -observed
when ® < 0-5. In all cases the computational root is equal to one when L = Ax. Thus there is no
mechanism for attenuating Ax waves that are introduced into the computational mode through
round-off error or poor initial conditions.

However, for the Crank—Nicolson scheme (® = 0-5) the computational root exhibits inter-
esting behaviour (Figure 5). When the number of collocation points per element is greater than
two the computational root is damped for all wavelengths greater than Ax. However, when
ncel = 2 the computational root is only neutrally stable for long wavelengths. This result leads us
to recommend the use of at least three collocation points per element with the Crank—Nicolson
formulation.

ACCURACY

The computational roots are generally damped. Accordingly, the physical roots of the amplifica-
tion factor mainly determine the accuracy of the numerical solution. In the discussion that follows
we consider only the physical roots.

Let N,, be the number of time steps required for the analytic solution to propagate the mth
mode one wavelength:

1 __L‘l_Lm
" VAt Co

where L,, = L/Ax is the normalized wavelength.

(20)
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A common measure of numerical performance is the amplitude ratio

_{(Fmd \N- _ |7 Vo [ Uml Y
R'"“(W) ‘<exp(—Da,iAt)> ‘(exp(—D&i)) @

R, is a measure of the amplitude error of the mth component of the numerical solution after the
analytic wave has propagated one wavelength. When R, > 1 the numerical solution has been
insufficiently damped and when R,, <1 it has been overdamped.

After N,, time steps the phase of A= is, by the definition of N, equal to 2. A measure of the
propagation error is the phase lag of the numeric solution after one complete wavelength has
been travelled by the analytic mode:!

Q, = N;,,tan"<lm:1"'>—27r. 22)
Re4,,

When Q,, >0 the numeric mode is being propagated too rapidly and when Q,, <0 it is being

propagated too slowly.

The amplitude ratios and phase lags for D = 0, ncel = 3 and a variety of Courant numbers are
plotted in Figure 6. The spectral behaviour of the numerical amplification factor tends to improve
as the Courant number increases. In general, this is true for all ELMs and it has been noted
previously.!! The error per time step is not strongly dependent on the Courant number.
However, solutions using larger Courant numbers require less time steps than those using smaller
Courant numbers to advect a plume the same distance. Hence less error is accumulated per
distance travelled.

Fourier modes with wavelengths greater than 2Ax are accurately propagated by ELLESCO
when D = 0. Fourier analyses of other ELMs?-% !! indicate that accurate propagation by these
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Figure 6. Amplitude ratio and phase lag versus normalized wavelength. Amplitude ratios and phase lags of the physical

amplification factors are plotted for D = 0, ncel = 3 and Co = 0-25,0-50, 0-75, 1-25, 1-50. Note the lack of phase error when

Co = 050 and 1-50. In general, the spectral characteristics of the amplification factors of the zero-dispersion case improve
as the Courant number and time step increase
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methods does not occur until wavelengths are greater than 5Ax. Accurate propagation does not
occur for classical methods until the wavelength is significantly greater than t0Ax.!

When dispersion is present the spatial discretization of a problem can be characterized by the
Peclet number (Pe = Co/D). The velocity and dispersion coefficient are fixed by the physical
setting of the problem and the spatial resolution is determined by the grid spacing. For a given
spatial resolution the free parameter in the numerical method is the time step interval At. By
fixing Pe and varying Co and D appropriately, we can see the effect of increasing the time step.

Figure 7 presents the amplitude ratio and phase lag results for Pe = 10, ncel = 3, @ =1 and
D = 0025, 0-125, 0-925 (Co = 0-25, 1-25, 9-25). Increasing values of D and Co correspond to
increasing Atr. As At increases, the numerical solution becomes increasingly underdamped. The
two curves at the lower right of Figure 7 show the amplitude decay per time step of the analytic
and numeric solutions for D = 0-925. Although wavelengths less than 10Ax are underdamped,
they are in phase. Narrow plumes will be propagated to the proper location, but they will be too
narrow (Figure 8). This is opposite to the behaviour of the implicit formulation of classical
methods, which tend to become too dispersed as At grows. However, Ewing and Russel® have
observed similar behaviour in the single-step MMOC.

The dispersion number D is the parameter of importance when evaluating the effects of
increasing At. Even in the presence of sharp fronts, implicit ELLESCO solutions will yield
accurate solutions for D < 0-05. For a given spatial discretization this is a limit on the time step.
However, as time advances, the diffusive nature of the system will eliminate the higher spatial
frequencies which are underdamped, and coarser discretizations can be implemented.

The Crank—Nicolson formulation (@ = 0-5) of ELLESCO behaves quite differently from the
implicit formulation. Figure 9 presents the amplitude ratios and phase lags for ® = -5, ncel = 3,

2
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Figure 7. Amplitude ratio and phase lag versus normalized wavelength. Amplitude ratios and phase lags of the physical

amplification factors are plotted for ® = 1, ncel = 3, Pe = 10 and D = 0-025, 0-125, 0-925 (Co = 025, 1-25, 925). In

addition, the two lower right curves are the amplitudes of the numeric and analytic amplification factors for D = 0:925. As
D increases, solutions become increasingly underdamped. Phase errors decrease with increasing D.
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Figure 8. Propagation of a Gaussian plume by implicit ELLESCO. A Gaussian plume with standard deviation of 99 is

propagated one time step by ELLESCO using @ = 1, Pe = 10, Ax = 200, D = 0-125, 0-925 and At = 25, 185. Solid lines

are initial conditions and analytic solutions. Broken lines are ELLESCO-computed solutions. The underdamping
predicted in Figure 7 leads to solutions which are too steep and tall
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Figure 9. Amplitude ratio and phase lag versus normalized wavelength. Amplitude ratios and phase lags of the physical

amplification factors are plotted for ® = 0-5, ncel = 3, Pe = 10 and D = 0025, 0125, 0925 (Co = 0-25, 1:25, 9.25). In

addition, the two lower right curves are plots of the amplitudes of the numeric and analytic amplification factors for

D = 0-925. As D increases, a discontinuity develops in the chatacter of the amplification factor. Short wavelengths become
underdamped and badly out of phase

Pe =10 and D = 0025, 0-125, 0-925. When D = 0-025, wavelengths of 2Ax and longer are
propagated quite accurately. Shorter wavelengths are lagged and overdamped. This leads to
excellent solutions in the presence of sharp features.

As At (and therefore D) is increased, the overdamping begins at longer wavelengths, but the
phase remains accurate until a discontinuity in the behaviour of the numerical amplification
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factor occurs in the shorter wavelengths. This abrupt change in behaviour occurs at about 2Ax for
D = 0125 and 4Ax for D = 0-925. At these wavelengths an abrupt change in phase occurs and the
smaller wavelengths becomes severely underdamped. The two curves at the lower right of
Figure 9 show the amplitudes of the analytic and numeric amplification factors when D = 0:925.
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Figure 10. Propagation of a Gaussian plume by Crank-Nicolson ELLESCO. A Gaussian plume with standard deviation
of 99 is propagated one time step by ELLESCO using © = 0-5, Pe = 10, Ax = 200, D = 0-125, 0-925 and Az = 25, 185.
Solid lines are initial conditions and analytic solutions. Broken lines are ELLESCO-computed solutions. When D gets
large, the phase errors and underdamping shown in Figure 9 lead to oscillations. Note the improvement over the implicit

solution for D = 0-125
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Figure 11. Amplitude ratio and phase lag versus normalized wavelength. The amplitude ratio and phase lag are plotted
for @ = 05, Pe = 10, D = 0-025 and ncel = 2, 3, 8. As the number of collocation points per element increases, the spectral
behaviour of the physical amplification factor improves. The greatest improvement occurs as ncel increases from two to

three
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The wavelengths around 2Ax are significantly underdamped and badly out of phase. Even more
disturbing, these modes will decay slowly because the amplitude of the numeric amplification
factor is relatively large (4] = 0-6). The effects of the phase and amplitude errors are illustrated in
Figure 10. Good results are obtained for D <0-125 and, as time increases and the shorter
wavelengths are damped, coarser discretizations can be used.

The oscillatory behaviour at large At is equivalent to the well understood oscillatory behaviour
of finite difference solutions to the heat flow equation.'® Groundwater flow modellers have also
seen this behaviour when taking too large an initial time step in the presence of discontinuous
initial conditions. In other words, the oscillations are not a result of the Eulerian—Lagrangian
procedure; rather, they are the result of taking too large a time step when solving the parabolic
problem with an elliptic spatial operator.

The number of collocation points per element also affects the amplification factors of the
ELLESCO method. Figure 11 presents the amplitude ratio and phase lag results for @ = 05,
Pe =10, D = 0:025 and ncel = 2, 3, 8. As the number of collocation points increases, both the
amplitude and phase behaviour improve. Most of the improvement in accuracy is gained by
going from two to three collocation points. Since increasing the number of collocation points also
increases the computational burden, three collocation points per element in one-dimensional
problems and nine collocation points per element in two-dimensional problems is the re-
commended base pattern when short spatial wavelengths exist in the concentration field. This is
consistent with the analysis of test problem results.

CONCLUSIONS

A Fourier analysis of the ELLESCO method has been performed. The amplification factors that
characterize the solution were derived by treating each degree of freedom associated with the
nodes as an independent variable and expanding them in separate Fourier series. A homogeneous
matrix equation was derived, and the required singularity of the system matrix was used to derive
a quadratic equation for the amplification factor. This approach can be used for the Fourier
analysis of any system of mixed node types or multiple degrees of freedom per node.

Stability for all ® > 0-5 has been demonstrated. However, the computational root is only
neutrally stable at long wavelengths when ® = 0-5 and ncel = 2.

The main advantages of ELLESCO are found when solving problems of advection-dominated
transport. The removal of the first-order term will not reduce the discretization limits arising from
the numerical solution of the transient diffusion problem. For the pure advection case, excellent
phase and amplitude behaviour are observed. Larger time steps will improve the solution and, in
parctice, the complexities of the velocity field will determine the ultimate limit of At.

As dispersion becomes important, the time step associated with a given spatial accuracy
becomes limited, and the dimensionless parameter which characterizes the limit is the dispersion
number. If short spatial wavelengths are present with significant amplitude, dispersion numbers
for the implicit case should be kept to less than 0-05 or the solution will be underdamped. For the
©® = 05, case, D should be kept to less than 0-125 or phase and amplitude errors can begin to
cause oscillations. In the case of very large dispersion numbers, these artefacts will persist for
many time steps. As the shorter wavelengths are attenuated by dispersion, the discretization can
be relaxed by either increasing At and D or by increasing both At and Ax and keeping D constant.

Finally, Fourier analysis results demonstrate that more collocation points per element im-
proves the spectral behaviour of the amplification factor. Most of the improvement is gained by
going from two to three points per element.
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APPENDIX 1

The coeflicients of equation (8) obtained for the geometry of Figure 1 are presented in this
appendix. In the example there are three collocation points per element, ncel = 3, and six
collocation points contribute to the final coefficients. Although the summation details will vary
with ncel and a, the general form of the equations will not change, and the interested reader can
use this appendix as a guide when deriving the coefficients for other configurations.

Define the operators
62

az
L, z(l +4(1 -@)D@) (23)

The coefficients associated with the unknown values of C;* ' and CX;* ! are the terms found in
the system matrix of the ELLESCO algebraic system of equations. They are computed as

5o
It
™Me e 1PMw 1Me 1w

af = 3 Li®YE)L B,

[N Y=}

L, @5(&)L; @28y,

1)

[L; ®2()L, O + L @)L, 5],

1

sQ

(L ®1EIL, @) + Ly Bo ()L, B3],

)

=
—-

wo

]

L, @)L, D),

{_
-

S
A
[

=
I

1 L @i (¢)L D). (24)

Coefficients a} to a} are computed using the weighting function of equation (6b). Their form
will be the same as the equivalent terms in the above equations except that the right-hand factors
of the products are replaced with the @} equivalents. For example,

3
a3 = kzl [L, ®9(&)L, ®i(E) + L ®(E)L, PE(E)]. (25)

The coefficients associated with the terms from the previous time level, C; and CX7}, are
contained in the right-hand-side vector of the ELLESCO matrix equations. They are computed
as

flo = de)g(fx —2a+ 2)L1q)(1)(§1),
12 =Ly ®(¢, — 20+ 2L, ®Y(¢,),
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13 = L00E, ~ 20+ DL, B8E) + 3, Lo03(E ~ 20)L, 09(E)
+L,®3(¢, — 20 + 2)L, ®S(£,),

f2=L01(¢ — 20+ 2)L1(D(1)(§1)+kz,2 L,®4(& — 2L, ®9(&,)
+ L, ®5(¢, — 20+ 2)L, ®S(E)),

Z L, ®%(& — 2a)L, ®9(&,) + L, ®(E, — 2o + 2)L, BI(E))
+ 3 L,03(6 ~ 2L, B5(E,)

8= i L, ®{(% — 20)L, @(&) + Ly @1(¢, — 20+ 2)L Do(E,)
+ 3 L0346~ 2L, 8

= ¥ L0321, 05,

3
fe = kzz D (& — 2Ly D(E)- (26)

Coefficients f! to fi are computed as above, but the right-hand factors of the products are
replaced with the @} equivalents. For example,

3
fi= Z L,®%(& — 20)L, ®}(£,) + L, ®Y(E, — 22 + 2)L, Dg(¢,)

+ Z L, ®3(¢, — 20)L, DI(E,). 7)

The co-ordinates &, are uniquely specified by the number of collocation points per element,
ncel. Hence the a and f coefficients are functions of the dimensionless dispersion number, the time
weight and the number of collocation points per element. The f coefficients are also dependent on
the fractional Courant number. The definitions of ®} and ®} contain Ax, but this dependence will
vanish in the derivation of the amplification factor and is of no significance.

APPENDIX II

This appendix contains some details from the development of equation (19). We define the
following groupings:

Ad =a%e ™+ ad + alel’,

AL = a%e ¥ +ad + ale”,

Ay =ale " +al +alel,

Al =ale " +al+ale”,
8Ef0 —|20+f0 —m+f0+f0 w
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E=/2e7 +f5eT + /e + /36",
Fo=fle 2 +fle™™ +fi+f1e",
E= 177+ f1e7 4 f5 + fiel. (28)
The matrix elements of equation (17) become
pyy = A3Z — FdeiM,
By = ARL— Fle i,
Hay = Aéz ~Fge™ ™,
Hay = ART~ Fe M, (29)
Substituting the above relations into equation (18) we arrive at the expanded form
(AQAL— ALADA: ve "M (— AQF L — ALFS + ASFQ+ ASF L)
+e 2 M(FOFL_FLlFY)=0. (30)

At this point we note that all of the terms with subscript E contain a Ax residing in the definition
of the @} basis functions. Similarly, those terms with superscript 1 contain a Ax due to the H
basis functions in the weighting function. Dividing through by Ax? eliminates all Ax dependence
outside of the dimensionless variables.

The equation (19) parameters are

a=AgA;— A5 AL,
b= —AJFL— ALFO+ ALFY + AQF),
¢=F3FL—F§FQ. 31)

The least squares method produces a symmetric system matrix which leads to the following
identities (see Appendix I):

a? = a3,
a; = ag,
ag = aé9
a = al. (32)

In addition, the asymmetry of the @} basis functions combined with the symmetric placement

of the collocation points leads to

— 0
= —dag,

as = —aj. (33)

a

- NO

By applying the equalities of equations (32) and (33) to the definitions of A in equation (28), it
can be shown that A3 and A{ are real and that A2 and A} are complex conjugates. We conclude
that a is a real function of D, ®, ncel and &. In general, b and ¢ are complex functions of D, ®, ncel,
¢ and a.

An interesting exception is for wavelength L = 2Ax. For this particular case & = 7 and 4, b, ¢
and the exponential term in equation (19) are all real. However, if 4ac is greater than b2, which is
the case for small to moderate values of D, the two roots of the amplification factor will have the
same amplitude and opposite phase.
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